AD=-A068 913 PURDUE UNIV LAFAYETTE IND DEPT OF MATHEMATICS F/6 12/1
A PROPOSAL FOR RESEARCH ON STOCHASTIC METHODS AND PROBLEMS IN A==ETC(U)
1979 C J HOLLAND AFOSR—?T-SZS&
UNCLASSIFIED AFOSR=TR=79-0603

END
F‘IA'Q‘:

?_”‘




PR o i " Bt Lol i Ll i . o G e o

P

AFOSR-TR- 79-0608

Xrrerien

FEN#d> REPORT
ON
A PROPOSAL FOR RESEARCH
ON
STOCHASTIC METHODS AND
PROBLEMS IN APPLIED MATHFEMATICS
(AFOSR 77-3286)

PRINCIPAL INVESTIGATOR

Charles J. Holland 521-66-96¢66
Associate Professor of Mathematics
Purdue University

West Lafayette, Indiana 47907

ABAO68913

£
O
: (i)
¥
i e
e
[ S |
=
&=
.%; AIR PORCE OFFICE OF SCIENTIFIC RESEARGH (AF
r NOTIBE OF T 143 iTTAL TD D2 T
; . This techaicul et Was twen reviewed and is
- @pprove! v unicn rolesse IAW AFR 190-12 (7b).
L Pistribiaca is unlimited,
: A. D. BLpSH
| i Techanical Informwation Officer '
Y

App;;voa for public release;
distribution unlimited.

af
.




b i R A
e T DR e WL

g 15 TR e 3 PO

SLLURITY CLASSIFICATION OF THIS PAGL (When 'ate Entered)

READ INSTRUCTIONS
DCCUMENTATION PAGE BEFORE COMPLETING FORM

2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
e

" TITLE fand Scbsiiia) B——— e oY 5. IYPE OF REPORT & PERIOD COVERED
Proposal for Researth on @‘jz!'wml

re PT'> ;
@FHASTIC gz'rﬁons AND PROBLEMS IN APPLIED U e B e
ATHEMATICS » =

Abd-B- g
T HORtY

8. CONTRACT OR GRANT NUMBER(s)

@arles J./Hclland Z_ @?j‘/AFdSR*ﬁ-aZBG e Z

9. PERFORMING ORGANIZATION NAME AND ADDRESS

\',;';; !
i
=

10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK_UINIT NUMBERS
Purdue University ([P
Department of Mathematics - { 61102FA1 @j’
West Lafayette, IN 47907
11. CONTROLLING OFFICE NAME AND ADDRESS

Air Force Office of Scientific Research/NM (, e
Bolling AFB, Washington, DC 20332

43

16

1S. SECURITY CLASS. (of this report)

T s f:{-:i;:f{ﬂ‘ B

4. MONITORING AGENCY NAME & ADDRESS(if dillerent from Controlling Office)

"'i,, F' UNCLASSIFIED

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

- R S A IR

Approved for public release; distribution unlimited

PR,

13 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
¥

£

g 18. SUPPLEMENTARY NOTES

¥

§

i

L

5

i 19. KEY WORDS (Continue on reverse side il necessary and identify by block number)
f

§

20. ABS&ACT (Contlnue on reverse side If necessary and identify by block number)

The determination of the limiting long time behavior of the system using a
fixed control was answered in the case of a stcchastic system perturbed by a
small additive noise term where the control is such that the corresponding
deterministic system possesses a stable limit cycle. A new characterization
was given of the principal eigenvalue for second-order linear elliptic partia]
: differential equations, not necessarily self-adjoint, with both natural and
Dirichlet boundary conditions. A new alternative numerical method was given

for calculating both the principal eigenvalue and corresponding eigenvector ip

DD ,520%: 1473 4, B LT st L

SECURITY CLASSIFICATION OF THIS PAGE (When Data

tered)

R e ——

o— A ——————



FINAL REPORT

This is a final report of the work completed under

AFOSR 77-3286. In Section I, the proposed research is
reviewed and in Section II the work completed under the
grant is discussed. Finally, in Section III work in

progress under the support of AFOSR 77-3286B is discussed.
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I. Research Proposal.

Problems in Optimal Nonlinear Filtering

In this part of the research we seek a computationally
convenient technique for solving the filtcring and prediction
problems for a class of nonlinear stochastic differential
equations subject to partial observations at discrete time
points. The applications of the technique described below to
trajectory estimation are apparent.

Let there be given q functions £ fq which are

l,fz,-co
known to us. Suppose for some ie{1,2,... g}, unknown to us,
the state of the process is evolving accordinyg to the vector

stochastic differential equations

dx

fl(tlx)dt ot g(t.x)dw. X(O) = X.

At the discrete times SRERE tp, which are known in advance,
an intermediate observer (usually a machine) receives noise
corrupted observations of the stochastic process x(t). These

observations y(t) satisfy the stochastic differential equations
dy = H(t,x,y)dt + g(t,x,y)dw, y(o) = 0.

Suppose that y(t) € R' for some m. Assume there exists known

pairwise disjoint sets Bi' 1= 1,.00em, LJBi = K'. Then at each

time tj' j =1,2,... p, we receive from the intermediate observer

only the information as to which of the events y(tj) € B, has

occurred.

Our first problem is to determine for each function fi'




the probability that the function fi is being used given
available information.

Our second prediction problem is the tollowing: Given our
information at times t = tl'tz""'tp' and the function fi'
determine the best prediction in mean square o. some function
h(x(T)) of the process, T > tp. ;

Let us discuss problem 2 which we have recently solved
theoretically. For each possible information set, we must
solve a coupled set of second order partial differential
equations. Since the boundary conditions are of Cauchy type,
they can be solved numerically. There are mnmxp information
sets, each requiring the solving of the ccupled set of partial
differential equations. Although these probloms appear complex,
they have the important practical advantage that they can be
completely precomputed and do not need to be solved in real-time.

In this research we intend to consider the problems discussed
above iooking at both the theoretical solution and effective

computational methods that can be developed from the theoretical

solutions.

APPROXIMATION TECHNIQUES IN STOCHASTIC CONTROL PROBLEMS
In this research we continue our investigation of approxi-

mation techniques for a wide class of discrete and continuous ;

Al ST LN

time stochastic control problems. This research centers on small ( |
noise problems in the continuous case and on nonclassical | l
|

stationary problems in the discrete case. Emphasis is placed 5

on the development and theoretical justification of techniques - ;




which yield computationally tractable algorithms that answer the

following:
(1) approximations to the optimal cost and the cost of
using a particular control.
(2) approximations to the optimol control.
(3) evaluation of the relative performanc. of two controls.
(4) estimates for the deterioration in system performance

due to the failure to observe certain svstem components.

SMALL NOISE PROBLEMS IN CONTINUOUS TIME
Outline:

One general problem has been to solve "approximately" the
stochastic control problem in terms of quantities computable from
the solution to the corresponding deterministic control problem
when the noise entering the system equation is a "swall" paraneter.
The general procedure is to theoretically establish expuansions of
the optimal cost and control in powers of the noise coefficient.
The expansions then suggest appropriate tforms for suboptimal
controls and numerical techniques for determining them. The
theoretical development of the expansions involves the interplay
between probability and partial difterential equations. Sece [4]
for a general review of the current state in this area.

The theoretical portion of this approach for the conpletely
observable problem was treated successfully by Flawming [3]: the
numerical algorithms suggested by the theoremns were developed

and employed on some two dimensional examples by this author in

[5]. A partial solution to the open loop control problem was




developed by the author in (6] and [8). In this research we

intend to extend the results of the open loop control problem
and derive similar results for the sampled-data problem.

Finally, we intend to investigate the stationary swall noise
control problem in the case of both conplete and partial obser-
vations. Under certain assumptions we have com; uted an cxpansion
of the cost of using a fixed contreol in (/|. The - xpansions in
this case are nice in that the coefficients of the expansion
satisfy algebraic equations and hence can Lo conputed easily.

In this research we seek expansions of the optimal cost and
control under suitable assumptions. Further we intend to invoesti-
gate approximatction techniques suggested by our already established

result.

Details:

Many problems of continuous time stochostic control can be
formulated as follow. Let x(t) = (xl(t), xz(t),...,xn(t)) ¢ R®
denote the state of the systom at time t, and suppose that the

states evolve according to the stochastic differential equations
dx(t) = f(t,x(t),u(t))dt + b(t,x(t))dw(t), t > tor (1)

with initial condition x(ty) = x5 ¢ B, where x, is a constant

and B is defined below. 1n (1) w is a normalized n dimensional
brownian motion process and u(t), which takes values in a compact
set K C Rk. is the control applied at time ¢t. As is custouary

dependence on (1) and other equations on the point o in the

sample space Q1 is omitted.




Finite time control problems. Let 1t denote the first time

t 2 t, such that (t,x(t)) £Q where Q = (t,,T) x B and B

is an open subset of R"

such that its boundary 0B 1is a
snooth manifold with compact closure. Then the optimal control
problem is to choose u € % the class of admissible controls,

SO0 as to minimize the guantity

E IT L(t,x(t), u(t))dt (2)
%o
where E denotes expected value.
The class % is chosen to reflect the amount of information
available to the controller. 1In this part of the research we

consider three special cases:

Open loop case. No observations of x(t) are made for

t > tyi hence % is selected to be the set of Borel

measurable functions on [to,T].

Complete observations. Here the controller observes the

process at each time t and therefore % is chosen to be
{ulu(t) = Y(t,x(t)) where Y is a measurable function on

[ty,T] x R"}.

Sampled-data case. Suppose that the process is observed

at times to, tl,...,t 7 obe < By Gew £ =05 et

|~ 1 p
bk = (x(to),...x(tk)) and let Yk
on [to,T] x Rnk. Then % is chosen to be

be a measurable function

{ufu(t) = Yk(t,bk)) for some Yk defined above, if

t

k_l _<_ t < tk' k = 0,1’.-. p—l}.




Define ¢%(ty,xg), ¥E(tgixg), x(tg.xg), and 6°(tg,x)

to be the optimal cost for the point (to,xo) in the completely
observable, open loop, sampled-data, and deterministic control
problems, respectively, with the superscript ¢ indicating that
b(t,x) = (25)1/1: is used in (1). Assume that (to,xo) €N
where N is a region of strong regularity. A region of strong
regularity, see [3), p. 480, guarantees that the optimal de-

terministic control and trajectory have certain regularity

properties. Then Fleming showed in (3] that

¢€(t0,xo) = ¢°(t0,x0) + €0, + o(e) (3)

and this author showed in [6] in case B = r®  that

Vo (tgixg) = 07(tguxg) + €0, + ofe) (4)

where 91 and ©O can be determined from a knowledge of the

2
solution of the corresponding deterministic control problem.

In this research the author seeks to extend the result (4) when
B merely satisfies the earlier hypothesis and also to establish

the analagous result
€t ,x.) = ¢°(t, ,x.) + €0, + o(e) (5)
X %9 % 0'*0 3

in the sampled-data problen.
Let Yo(t,x) denote the optimal feedback control in the

completely observable case, then Fleming [3] showed that

v&€(t,x) = Y®(t,x) + eW(t,x) + o(e) (6)

e il b nac S0 oo S Lh o OfL AN LY
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uniformly in (t,x) on compact subsets of those regions in N
where Y° is a C* function. We seek similar e» ansions of
the optimal control in the open loop and samplod-uata casces.
Under assumptions which included that each open locp control
generate a Gaussian process, we ostablished in (8] "
expansions of the optimal control in powers of :

The numerical methods for chlculatinag the gaantities Oy
and W(t,x) 1in (3) and (6) has been discussed 10 o vape: |5)
by the author; the author has also developed under certain

"

assumptions a numerical method tor finding "be .t" (ontrols of
the form u® + ¢z for some function 2 i) the open loop caso
In case an expansion of the open loop cont ol 1is established,

then the function 2z must be the coeffici n. of .

Stationary control probleuns. Let % dencie the cluss 00 auto=-

nomous feedback controls for which the autonomous version ¢ (1)
has a unique ergodic weasure. Sce Kushner {11], Wonham [14],
and Zakai [16]) for a discussion of this assunption. The ergou:c
measure depends on both u ¢ ¥ and ¢ will be denoted by

p(u,e,*). The optimization problen is to choose u ¢« % so that

J(u,e) = [ L(x,u(x))du(u,c,x) (7)
RD
is minimized. Denote the minimum cost by J*(¢) and the optimal
control by u®. Under certain assumptions we have shown [7] that

for each u,

n
J(u,e) = J e®ok + ole™ (8)
k=0
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for same constants 01.02....,0n which satisfy algebraic
equations. The integer n depends upon the smoothness of f,L,
and u.

In this research we seek expansions of J*(¢) and u" in
powers of ¢. We will also examine the utility of implenenting
a truncated expansion Gf (8) as an approxination to the cost in
order to determine suboptimal controls. Our present research
seems to indicate that this 1s a good technigque when the class
of controls is restricted to those having prescribed forus
with unknown parameters.

The stationary control problem has beon previously studied
by Wonham and Cashman [15] who used statistical linearization

as an approximation tool.

STATIONARY DISCRETE TIME CONTROL

Discrete time stochastic control problems have been thoroughly
considered, however, most prior work considers the case in which
the controller remembers all previously obtained information.
This has been called the classical information pattern by
Witsenhausen [13]. We intend to investigate the stationary
control case where the controller has only partial observations
of the system state and no memory. This emphasis is motivated by
systems in which is too difficult or expensive to observe all
system components, and systems in which it is ditficult to
implement controls using past information.

Under certain reasonable assumjtions we have succeeded in

reducing the optimization problem to a problem in nonlinear




progranming [9). We have also constructed examples to show that
one can do better by using randaunized controls then by only using
nonrandomized controls of the current observed data. In problens
of this type with conplete observations it is known that the
optimization problen can be treated as a problen in linear pro-
grarnming [12] and that the controller cannot do hetter by
considering randomized controls [1].

In this research the author intends to investigate the
computational complexity of the nonlinear programming algorithm
and to seek conditions on the partially observable problem which
guarantee that the optimal control can be chosen to be non-
randomized. This latter guestion is important both tor designing
conputational algorithms and systen design.

The importance of such problems was first brought to our

attention by Dr. Raymond Rishel.
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II. Work Completed Under the Grant.

(1) Stochastically perturbed limit cycles, J. Applied Probability
15, 311-320 (1978).

An important question in the stability and control of
stochastic systems is the determination of the limiting long
time behavior of the system using a fixed control. This work
answered that question in the case of a stochastic system perturbed
by a small additive noise term where the control is such that the
corresponding deterministic system possesses a stable limit cycle.

It is shown that in the limit of large time the stochastic
system is near the limit cycle. This is a stability result.
Moreover, one can compute approximately at which portions of the
linit cycle one is most likely to be found. Further various

stationary average can be computed.

These results will be of use in designing approximate controls
for stationary stochastic control systems. For a detailed dis-
cussion of these results, see the completed above paper.

(2) A Minimum Principle for the Principal Eigenvalue for Second-
Order Linear Elliptic Equations With Natural Boundary Conditions,
Communications in Pure and Applied Mathematics 31(1978) 509-519.
This work gives a new characterization of the principal eigen-

value for second-order linear elliptic partial differential

equations, not necessarily self-adjoint, with both natural and

Dirichlet boundary conditions, and also gives a new alternative

numerical method for calculating both the principal eigenvalue and

corresponding eigenvector in the case of natural boundary conditions.

The principal eigenvalue, if appropriate sign changes are made,




determines the stability of equilibrium solutions to certain

second order nonlinear partial differential equations. The
corresponding eigenvector enables one to determine the first
approximation of the solution of the nonlinea - cuation to
variations of the initial condition from the juilibrium
solution. These nonlinear equations are important in the appli-
cations. For these reasons it is important to have these
characterizations of the principal eigenvalue and ‘:igenvector.

Our method converts the determination oi the eigenvalue
and eigenvector to determining the solution of a stationary

stochastic control problem. This latter prcblem is solved and

from it a numerical scheme arises naturally. This mnethod appears

to have applications in solving other probloms.




III. Work in Progress.
In the recent work in (2) above, we were able to derive a
new characterization of the principal eigenvalue for second order

linear elliptic partial differential equations, not necessarily

self-adjoint, with both natural and Dirichlet boundary conditions,

and also give a new alternative numerical method for calculating
both the principal eigenvalue and corresponding eigenvector in
the case of natural boundary conditions.

We shall use the above results to determine the asymptotic
behavior of the principal eigenvalue for some singularly perturbed
eigenvalue problems as a small nuisance parameter tends to zero.
The principal eigenvalue is the optimal value for a singularly
perturbed stationary stochastic control problem. We are thus
able to determine the asymptotic behavior of the optimal value

of certain stationary stochastic control problems.
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